

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

bel2scm

 [image: GitHub Actions]

 [image: PyPI]

 [image: PyPI - Python Version]

 [image: PyPI - License]

This package is for creating Structural Causal Models (SCMs) in Pyro and evaluating various conditions with those
models.

Installation

Install directly from GitHub with:

$ pip install git+https://github.com/bel2scm/bel2scm.git

Install in development mode with:

$ git clone https://github.com/bel2scm/bel2scm
$ cd bel2scm
$ pip install --editable .

Where --editable symlinks the git repository into your python’s site-packages/ directory so you don’t have to
reinstall on changes.

Contributing

	All python code goes in src/bel2scm/

	All Jupyter notebooks go in notebooks/. Code in Jupyter notebooks should be refactored into the bel2scm package
such that most of the code in the notebook just imports code, does I/O, then makes visualizations.

Discussion

The causal model (example) can be created from a list of BEL statements strings (
causal_graph.str_graph; http://biological-expression-language.github.io), a PyBEL graph (
causal_graph.bel_graph; https://pypi.org/project/pybel/), or a json file created by exporting a causal graph from Causal
Fusion (causal_graph.cf_graph; https://causalfusion.net/login). Each causal model consists of nodes connected by
directed edges. Each node then has parameters defining the distribution of that node’s variables conditioned on the
values of the parent nodes. These parameters are learned from data – each graph can learn these parameters either using
Maximum Likelihood Estimation (for point estimates) or Stochastic Variational Inference (for Bayesian estimates).
Currently, Bernoulli, Normal, Lognormal, Exponential, and Gamma output distributions are supported; the choice of
distribution is either specified during the initialization or defaults to a hard-coded mapping from BEL object types to
distributions.

Once the training process is complete, the causal model can be queried in several different fashions. The basic query is
to sample all of the nodes of the model and return a dictionary of node names and samples (example.model_sample). Using
built-in Pyro functionality, the model can then leverage this to calculate conditioned samples (
example.model_cond_sample), interventional samples using the do-calculus (example.model_do_sample,
example.model_do_cond_sample), and counterfactual samples (example.model_counterfact).

The package includes a method to calculate the Conditional Mutual Information of a target node with respect to a test
node of interest (example.cond_mut_info). This calculation relies only on the input data, not the model itself. However,
the SCM also has a built-in method to perform the G-test on a variable of interest (example.g_test) to determine if the
SCM sufficiently captures the distribution represented by the provided data. Note that performing both of these
calculations requires binning the data to produce discrete distributions.

With the various methods for sampling conditional, interventional, and counterfactual distributions from the model, the
SCM can estimate the Controlled Direct Effect (example.cd_effect), the Natural Direct Effect (example.nd_effect), and
the Natural Indirect Effect (example.ni_effect). Finally, the SCM can write itself to a json file that can then be
imported directly to Causal Fusion (example.write_to_cf).

Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the Tests/ folder can be
run reproducibly with:

$ tox -e finish

Additionally, these tests are automatically re-run with each commit in a GitHub action.

Making a Release

After installing the package in development mode and installing
tox with pip install tox, the commands for making a new release are contained within the finish environment
in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

	Uses BumpVersion to switch the version number in the setup.cfg and
src/bel2scm/version.py to not have the -dev suffix

	Packages the code in both a tar archive and a wheel

	Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this
step

	Push to GitHub. You’ll need to make a release going with the commit where the version was bumped.

	Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can
use tox -e bumpversion minor after.

Folder Description

Files in this folder:

1. scm.py

The master/driver file to run bel2scm algorithm.
It contains the logic for bel2scm algorithm along with functions for
intervention and counterfactual inference.

2. bel_graph.py

This is a helper file for scm.py which takes graph structure as input
and returns a tree data structure to run the script.
Supported input formats include:

	json

	nanopub

	string

	jgf

3. config.py

This is a helper file for scm.py which assigns
configurable inputs from config.json file.
Parameters taken here:

	pyro distribution based on node type

	prior threshold

	parent-child interaction type

	max abundance for continuous variable

4. constants.py

This is a helper file to convert string inputs to meaningful outputs.
Currently it supports following variables:

	pyro distribution names as string (e.g. “Bernoulli”) to actual pyro distribution (e.g. pyro.distributions.Bernoulli)

	bel variables to categorical or continuous variables

	distribution for noise based on their variable type

	categories for sub-categories of bel variable types

5. node.py

creates a node object containing relevant information like parent name, parent type,
child name, child type, relationship type of a particular node in bel graph.

6. parameter_estimation.py

This file is used to take in node structure and relevant observational data for the given node and it’s parents
and learns parameters, i.e parameters for their pyro distribution.

7. parent_interaction_types.py

This file is used to translate whether the relationship between parent-child is AND or OR.

8. utils.py

This file contains every other utility function to run scm.py ranging from updating queue for graph traversal to
getting relevant distribution for a given node.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

